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TWIN CHALLENGES: ZERO CARBON, DOUBLE DEMAND
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Deep Decarbonization), Pacific Northwest National Laboratory; 2020 zero-carbon electricity supply from EIA Annual Energy Outlook 2019.



THE RAPID SWITCH: NEW ZERO CARBON ELECTRICITY NEEDED
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Data source: Difference between projected eledricity demand in Iyer et al. 2017 and 2020 zero-carbon electridty supply from EIA Annual Energy Outlook
2019. Assumes all 2020 generation can be sustained through 2050. Retirements of existing capacity would increase new zero-carbon generation needed. 3



HISTORICALPRECEDENTS (SCALED TO U.S. POPULATION)
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Average cost of electricity ($/MWh)
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Average cost of electricity ($/MWh)
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NATURAL GAS WITH CCS MAY PLAY SIGNIFICANT ROLE
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NATURAL GAS WITH CCS IS OPERATED FLEXIBLY
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AN EXAMPLE OF FLEXIBLE CCS IN A ZERO CARBON ELECTRICITY SYSTEM

Detailed case results for Northern system, very low cost scenario for all resources
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ANNUAL GENERATION DURATION CURVE
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UNIT COMMITMENT DISTRIBUTION
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HOURLY DISPATCH DURING PEAK DEMAND WEEK (JULY)
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AN EXAMPLE OF FLEXIBLE CCS IN A ZERO CARBON ELECTRICITY SYSTEM

Detailed case results for Southern system, very low cost scenariofor all resources
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ANNUAL GENERATION DURATION CURVE
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UNIT COMMITMENT DISTRIBUTION

Average Fleet-wide NG+CCS Commitment Factor:46%
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HOURLY DISPATCH DURING PEAK DEMAND WEEK (AUGUST)
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SOME OPEN QUESTIONS

* Whatis the ideal “design space” for CCS from the electricity system perspective? What set of
cost and performance characteristics are most attractive/make CCS most competitive?

* (Capital and fixed O&M costs; Capture efficiency; Heat rate; Ramping rates;
Minimum turndown / stable output; Cycling costs; Cycling time

* How does availability of other competing or complementary resources (e.g. nuclear, storage,
flexible demand, wind vs. solar heavy systems) affect the ideal design space for CCS?

 How valuable is it to de-couple parasiticloads for the capture processto enhance flexibility
(e.g. storing oxygen for oxyfuel combustion, storing saturated amines for later CO2 removal)

* Isitvaluable to have a variable capturerate (with tradeoffsin heat rate)? —Is it worth achieving
a lower turndown level by increasing capture rate at a greater efficiency penalty vs. cycling off
the plant?

* Are there cost-effective/competitive opportunities for coupling thermal or electrical storage?
19
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